如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示。 (1)等比数列的通项公式是: 若通项公式变形为(n∈N*),当q>0时,则可把看作自变量n的函数,点(n,)是曲线 上的一群孤立的点。 (2) 任意两项,的关系为 (3)从等比数列的定义、通项公式、前n项和公式可以推出: ,k∈{1,2,…,n} (4)等比中项:当r满足p+q=2r时,那么则有 ,即为与的等比中项。 (5) 等比求和: ①当q≠1时,或 ②当q=1时,记,则有 在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。 扩展资料:等比数列是指如果一个 数列从第2项起,每一项与它的前一项的 比值等于同一个常数的一种数列,常用G、P表示。 这个常数叫做等比数列的 公比,公比通常用字母q表示(q≠0),等比数列a1≠ 0。其中{an}中的每一项均不为0。注:q=1 时,a n为 常数列。 参考资料:等比数列公式-百度百科
公比为q,一共2m项(m为自然数)
奇数项和:a1+a3+a5+……+a(2m-1)=a1(1+q^2+q^4+……+去……(2m-2))=85
偶数项和:a2+a4+a6+……+a2m=a2(1+q^2+a^4+……+q^(2m-2))=170
因为是等比,把两个一比就是a2/a1=q=170/85=2,公比就是2
所有项数和是255
那么a1(1-q^(2m))/(1-q)=255
2^(2m)=256
2m=8
所以一共8项
答:公比为2,项数为8
等比数列求和公式: (1)q≠1时,Sn=a1(1-q^n)/(1-q)=(a1-anq)/(1-q) (2)q=1时,Sn=na1。(a1为首项,an为第n项,q为等比) Sn=a1(1-q^n)/(1-q)的推导过程: Sn=a1+a2+……+an q*Sn=a1*q+a2*q+……+an*q=a2+a3+……+a(n+1) Sn-q*Sn=a1-a(n+1)=a1-a1*q^n (1-q)*Sn=a1*(1-q^n) Sn=a1*(1-q^n)/(1-q) 扩展资料 等比数列在生活中也是常常运用的。如:银行有一种支付利息的方式——复利。即把前一期的利息和本金加在一起算作本金,在计算下一期的利息,也就是人们通常说的“利滚利”。按照复利计算本利和的公式:本利和=本金*(1+利率)^存期。
(1)等比数列的通项公式是:An=A1*q^(n-1)
若通项公式变形为an=a1/q*q^n(n∈N*),当q>0时,则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q*q^x上的一群孤立的点。
(2)求和公式:Sn=nA1(q=1)
Sn=A1(1-q^n)/(1-q)
=(a1-a1q^n)/(1-q)
=(a1-an*q)/(1-q)
=a1/(1-q)-a1/(1-q)*q^n ( 即A-Aq^n) (前提:q≠ 1)
注意:任意两项am,an的关系为an=am·q^(n-m);在运用等比数列的前n相和时,一定要注意讨论公比q是否为1.
(3)从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}
(4)等比中项:aq·ap=ar^2,ar则为ap,aq等比中项。即πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1。另外,一个各项均为正数的等比数列各项取同底数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。
等比中项定义:从第二项起,每一项(有穷数列和末项除外)都是它的前一项与后一项的等比中项。等比中项公式:An/An-1=An+1/An或者(An-1)(An+1)=An^2
(5)无穷递缩等比数列各项和公式:公比的绝对值小于1的无穷等比数列,当n无限增大时的极限叫做这个无穷等比数列各项的和.
(6)由等比数列组成的新的等比数列的公比:{an}是公比为q的等比数列
例:1.若A=a1+a2+……+an、B=an+1+……+a2n、C=a2n+1+……a3n,则A、B、C构成新的等比数列,公比Q=q^n
2.若A=a1+a4+a7+……+a3n-2、B=a2+a5+a8+……+a3n-1、C=a3+a6+a9+……+a3n,则A、B、C构成新的等比数列,公比Q=q
求和公式 求和公式推导: (1)Sn=a1+a2+a3+...+an(公比为q) (2)qSn=a1q + a2q + a3q +...+ anq = a2+ a3+ a4+...+ an+ a(n+1) (3)Sn-qSn=(1-q)Sn=a1-a(n+1) (4)a(n+1)=a1qn (5)Sn=a1(1-qn)/(1-q)(q≠1) 扩展资料 相关应用: 远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中,下一层灯数是上一层灯数的2倍,则塔的顶层共有几盏灯。 每层塔所挂的灯的数量形成一个等比数列,公比q=2,我们设塔的顶层有a1盏灯。7层塔一共挂了381盏灯,S7=381,按照等比求和公式, 那么有a1乘以1-2的7次方,除以1-2,等于381.能解出a1等于3. 尖头必有3盏灯。 参考资料来源:百度百科-等比数列求和公式
等比数列前n项和公式:Sn =a1(1-q^n)/(1-q)。等比数列公式就是在数学上求一定数量的等比数列的和的公式。 各项均为正数的等比数列各项取同底数数后构成一个等差数列。反之以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。 扩展资料 1、等比中项定义:从第二项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等比中项。 2、等比中项公式:an/a(n-1)=a(n+1)/an或者a(n-1)a(n+1)=an^2(括号内文字、n均为下标)。 3、无穷递缩等比数列各项和公式:公比的绝对值小于1的无穷等比数列,当n无限增大时的极限叫做这个无穷等比数列各项的和。